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A clamped}free #exible beam rotating in a horizontal plane and carrying a moving mass is
modelled by the Euler}Bernoulli beam theory. The equation of motion is derived by
Hamilton's principle including the e!ects of centrifugal sti!ening arising from the rotation of
the beam. The motion of the moving mass and the beam is coupled. The equation of motion
is a coupled non-linear partial di!erential equation where the coupling terms have to be
evaluated at the position of the moving mass. In order to obtain the mode shapes which
account for the motion of the moving mass, the solution is discretized into space and time
functions and the beam is divided into two separate regions with respect to the moving mass.
This results in two non-homogeneous linear mode shape ordinary di!erential equations
with four boundary, one discontinuity and three continuity conditions. The power series
method is used to solve for the mode shape di!erential equations. A frequency equation is
derived giving the relationship between the non-dimensional modal frequencies and the four
non-dimensional parameters, i.e., the moving mass position, the moving mass, the beam
angular velocity and the total moment of inertia about the hub. The numerical bisection
method is used to solve for the vibration frequencies under di!erent parameters. Results are
presented for the "rst three modes of vibration.
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1. INTRODUCTION

The dynamic response of beam-like structures subjected to moving mass has long been
investigated by numerous researchers in the "eld of civil and mechanical engineering. In the
"eld of civil engineering, typical examples include the dynamic response of a single or
multi-span bridge under moving loads, vehicles and trains [1, 2], whereas in the "eld of
mechanical engineering, examples include the dynamic response of cranes carrying moving
loads or a robotic arm carrying a moving end e!ector (i.e., SCARA robot).

Most researchers on this subject used either a moving-force or a moving-mass model for
the system and most of them used the assumed mode method in the formulation of the
equation of motion [1}7]. The mode shape function is chosen so that it satis"es the
prescribed geometric boundary conditions of the beam. The vibration behavior such as the
beam de#ection subjected to di!erent values of moving force or mass, di!erent moving mass
velocities or position, etc., are usually analyzed. In recent years, the inertial e!ect of the mass
and the interaction between the mass and the beam have attracted much attention. The
mode shape function is required to satisfy not only the boundary conditions but also the
transient conditions imposed by the moving mass. Stanisic [8] developed a method to
obtain mode shape which accounts for the motion of the mass by dividing the beam into
two separate regions with respect to the moving mass. Later, Khalily et al. [9] extended the
work to obtain numerical solutions using two mode shapes for the system. Recently,
0022-460X/01/150857#22 $35.00/0 ( 2001 Academic Press
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Siddiqui et al. [10] investigated the dynamic behavior of a #exible cantilever beam carrying
a moving mass-spring. In their work, the internal resonance behavior due to the coupling
between the motion of the moving mass-spring and the beam is investigated. However, for
all the above studies [1}12] the beam is not subjected to rotation and hence the e!ects of
centrifugal sti!ening [13] is not considered in their work.

This paper makes use of the method by Stanisic [8] but takes into account the e!ects of
centrifugal sti!ening [13] due to the rotation of the beam in the formulation of the equation
of motion. The system is a clamped}free rotating #exible Euler}Bernoulli beam carrying
a moving mass. The equation of motion is derived by Hamilton's principle. The motion of
the moving mass and the beam is coupled. The beam is divided into two separate regions
with respect to the moving mass (i.e., the left and right sides). The mode shapes have taken
into account the motion of the moving mass. This results in two non-homogeneous linear
ordinary di!erential equation with four boundary, one discontinuity and three continuity
conditions. The power series method is used to solve the mode shape di!erential equations.
A frequency equation is derived giving the relationship between the non-dimensional modal
frequencies and the four non-dimensional parameters, i.e., the moving mass position, the
moving mass, the beam angular velocity and the total moment of inertia about the hub. The
numerical bisection method is used to solve the vibration frequencies under di!erent
parameters. Results are presented for the "rst three modes of vibration.

2. THEORY AND FORMULATION

A clamped}free #exible arm carrying a moving mass is shown in Figure 1. It is modelled
by the Euler}Bernoulli beam theory in which rotary inertia and shear deformation e!ects
are ignored. The arm is of length ¸, mass per unit length o and #exural rigidity EI. It rotates
at an angular velocity of hQ in a horizontal plane about the clamped axis and has a mass
m travelling along it. Let OX> and Oij represent the inertial and rotating Cartesian axes
respectively. The moment of inertia of the hub is J. The transverse displacement of a spatial
point on the beam at a distance r (0(r(¸) from the origin is denoted by w (r, t). The
position vector r at a spatial position r is given by

r"ri!w (r, t)j, r5"w (r, t)hQ i#rhQ j!wR (r, t)j . (1)

Let s (t) be the position of the mass with respect to the clamped end of the beam and sR (t) be
the velocity of the mass relative to the beam. The resultant velocity V

m
of the mass is

V
m
"[r5#s5 ]

r/s
"[(sR#whQ )i#(rhQ !wR !sRw@ ) j]

r/s
, (2)
Figure 1. A rotating #exible beam carrying a moving mass.
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where a dot and a prime denote the derivatives with respect to time t and the spatial
variable r respectively. The kinetic energy of the beam is

¹
b
"

1

2 P
L

0

or5 Tr5 dr#
1

2
JhQ 2. (3)

The kinetic energy of the moving mass is

¹
m
"1

2
mVT

m
V
m
. (4)

The total potential energy of the system is

<"
EI

2 P
L

0

wA2dr#
1

2 P
L

0

P (r, t)w@2 dr, (5)

where P (r, t) is the centrifugal force arising from the centrifugal sti!ening e!ect and is given
by

P (r, t)"G
mshQ 2#P

L

r

orhQ 2dr, 0)r)s,

P
L

r

orhQ 2dr, s(r)¸ .
(6)

The virtual work done by the applied motor torque q is given by

d="q dh. (7)

By applying Hamilton's principle,

P
t2

t1

(d¹
b
#d¹

m
!d<#d=) dt"0. (8)

Substituting equations (1)}(7) into equation (8), one obtains the governing equation of
motion of the #exible beam as

EIwAA!P (r, t)wA#orhQ 2w@!ohQ 2w#owK!orhG

#m(sKw@#2sRwR @#sR 2wA!2sR hQ !whQ 2#wK!rhG )d(r!s)"0, (9)

where d( ) ) is the Dirac delta function. The four boundary conditions are

w (0, t)"w@(0, t)"wA(¸, t)"w@@@ (¸, t)"0. (10a}d)

When the mass is located at the tip of the beam (s"¸), the equation of motion of the
#exible beam and the boundary conditions become

EIwAA!m¸hQ 2wA!1
2
ohQ 2 (¸2!r2)wA#orhQ 2w@!ohQ 2w#owK!orhG"0 (11)
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and

w (0, t)"0, w@(0, t)"0, wA(¸, t)"0, (12a}d)

mwAA(¸, t)#ow@@@ (¸, t)"0.

Torque balance about the hub gives

J
t
hG"q!k

l
, (13)

where J
t
is the total moment of inertia about the hub and

k
l
"P

L

0

orwK (r, t) dr#mswK (s, t). (14)

Setting q"0 for free vibration of the beam, equation (13) becomes

hG"!

k
l

J
t

. (15)

3. DETERMINATION OF THE MODE SHAPE EQUATIONS

Let the solution of equation (9) for w(r, t) be expressed as

w (r, t)"> (r)e*ut, (16)

where u is the natural frequency of the beam, > (r) is the eigenfunctions or mode shapes of
the #exible beam. In order to obtain >(r), the method introduced by Stanisic [8] is used.
Substituting the form of w given in equation (16) into equations (9), (14) and (15), and
considering two separate regions on the beam with respect to the mass (i.e., the left and right
sides), the following mode shape equations are obtained.

(1) 0)r(s:

EI>AA
L
!mshQ 2>A

L
!1

2
ohQ 2(¸2!r2 )>A

L
#orhQ 2>@

L
!ohQ 2>

L
!ou2>

L
"!

ork
J
t

. (17)

(2) s(r)¸:

EI>AA
R
!1

2
ohQ 2 (¸2!r2)>A

R
#orhQ 2>@

R
!ohQ 2>

R
!ou2>

R
"!

ork
J
t

, (18)

where

k"!P
L

0

oru2>(r) dr!msu2>(s) (19)

and >
L
(r, s) and >

R
(r, s) correspond to the left and right parts with respect to the mass, i.e.,

0)r(s and s(r)¸ respectively. Note that the term containing d(r!s) in equation (9)
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has disappeared in equations (17) and (18) because it only come into e!ect at the position of
the mass, i.e., r"s. Introducing the non-dimensional parameters

m"
r

¸

, s
0
"

s

¸

, N"

m

o¸
,

J
0
"

J
t

o¸3
, g"S

o
EI

hQ ¸2, X"S
o
EI

u¸2. (20)

Substituting equation (20) into equations (17)}(19) gives

(3) 0)m(s
0
:

>AA
L
!Ns

0
g2>A

L
!1

2
g2 (1!m2 )>A

L
#g2m>@

L
!g2>

L
!X2>

L
"!

k
0
m

J
0

. (21)

(4) s
0
(m)1:

>AA
R
!1

2
g2 (1!m2)>A

R
#g2m>@

R
!g2>

R
!X2>

R
"!

k
0
m

J
0

, (22)

where

k
0
"!P

1

0

mX2>(m) dm!Ns
0
X2>(s

0
) (23)

and a prime ( )@ represents the derivative with respect to m.
The four boundary conditions in equations (10a}d) become

>(0)">@(0)">A(1)">@@@(1)"0, (24a}d)

where

>(m, s
0
)"G

>
L
(m, s

0
), 0)m(s

0
,

>
R
(m, s

0
), s

0
(m)1.

(25)

Since> (m, s
0
) is a continuous function and the moving mass is being modelled as a particle

with no point moment acting at m"s
0
. Therefore,>(m, s

0
) together with its "rst and second

derivative should be continuous at m"s
0
. The following three continuity conditions should

hold:

>
L
(s
0
, s

0
)">

R
(s
0
, s

0
), (26a)

>@
L
(s
0
, s

0
)">@

R
(s
0
, s

0
), (26b)

>A
L
(s
0
, s

0
)">A

R
(s
0
, s

0
). (26c)

There is also a discontinuity condition imposed by the shearing force at the position of the
mass. In order to facilitate the derivation of this condition, we "rst set both sR and sK to zero in
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equation (9). Then inserting equations (14)} (16), (20) and (23) into it yields

>AA(m)!P
0
(m)>A(m)#g2m>@(m)!g2>(m)!X2> (m)#

k
0
m

J
0

"NCg2>(m)#X2>(m)!
k
0
m

J
0
D d(m!s

0
), (27)

where

P
0
(m)"G

Ns
0
g2#1

2
g2(1!m2), 0)m)s

0
,

1
2
g2(1!m2 ), s

0
(m)1.

(28)

Integrate equation (27) with respect to m over the interval [0, 1]; hence,

lim
D?0 P

s0~D

0

[>AA!P
0
(m)>A#g2m>@!g2>!X2>#

k
0
m

J
0
Ddm

#lim
D?0 P

s0`D

s0~D

[>AA!P
0
(m)>A#g2m>@!g2>!X2>#

k
0
m

J
0
Ddm

#lim
D?0 P

1

s0`D

[>AA!P
0
(m)>A#g2m>@!g2>!X2>#

k
0
m

J
0
Ddm

"P
1

0

NAg2>#X2>!
k
0
m

J
0
B d(m!s

0
) dm. (29)

Then equation (29) by means of equations (21) and (22) leads to

S>@@@(m, s
0
)TDm/s0

"NCg2>(s
0
, s

0
)#X2>(s

0
, s

0
)!

k
0
s
0

J
0
D . (30)

Equation (30) represents the jump of the shearing force in the beam at m"s
0

and S )T
denotes jump of the function, i.e.,

S f (m)TDm/S0
"lim

D?0

[ f (s
0
#D)!f (s

0
!D)].

De"ning

C
1
"!1

2
g2!Ns

0
g2, C

2
"1

2
g2,

C
3
"!X2!g2, C

4
"!

k
0

J
0

. (31)

Equations (21) and (22) of the #exible beam become

>AA
L
#(C

1
#C

2
m2)>A

L
#2C

2
m>@

L
#C

3
>
L
"C

4
m, (32)

>AA
R
#(C

2
m2!C

2
)>A

R
#2C

2
m>@

R
#C

3
>
R
"C

4
m. (33)
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Equations (32) and (33) are non-homogeneous linear ordinary di!erential equations with
variable coe$cients. The total solution can be expressed in terms of a homogeneous
solution and a particular solution in the form,

>
L
(m)">

Lc
(m)#Fm, 0)m(s

0
, (34)

>
R
(m)">

Rc
(m)#Fm, s

0
(m)1, (35)

where Fm is the particular solution, >
Lc

(m) and >
Rc

(m) are the homogeneous solutions of
>
L
(m) and >

R
(m) respectively. Substituting equations (34) and (35) into equations (32) and

(33), respectively, gives

>AA
Lc
#(C

1
#C

2
m2)>A

Lc
#2C

2
m>@

Lc
#C

3
>
Lc
"0, (36)

>AA
Rc
#(C

2
m2!C

2
)>A

Rc
#2C

2
m>@

Rc
#C

3
>
Rc
"0, (37)

F"

k
0

X2J
0

"

1

J
0
C!P

l

0

m>(m) dm!Ns
0
> (s

0
)D . (38)

4. POWER SERIES SOLUTION OF THE MODE SHAPE EQUATIONS

Equations (36) and (37) are homogeneous variable coe$cient di!erential equation that
cannot be solved analytically by using ordinary trigonometric or hyperbolic functions.
Hence, the power series method is used in this case by expressing the homogeneous solution
>
Lc

(m) and >
Rc

(m) as a power series in the independent variable m.
Let

u(m)"
=
+
k/0

a
k
mk, 0)m(s

0
, (39)

v(m)"
=
+
k/0

b
k
mk, s

0
(m)1. (40)

Substituting equations (39) and (40) into the homogeneous equations (36) and (37) and
equating coe$cients of a like power of m yields the following recurrence formula:

a
k`4

"!

C
1
a
k`2

(k#4)(k#3)
!C

kC
2

(k#4)(k#3)(k#2)
#

C
3

(k#4)(k#3)(k#2)(k#1)D a
k
, k*0,

(41)

b
k`4

"

C
2
b
k`2

(k#4)(k#3)
!C

kC
2

(k#4)(k#3)(k#2)
#

C
3

(k#4)(k#3)(k#2)(k#1)D b
k
, k*0.

(42)
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There are four arbitrary constants a
0
, a

1
, a

2
, a

3
in equation (39). Four linearly independent

solutions u
0
, u

1
, u

2
, u

3
can be obtained by selecting these four arbitrary constants as follows:

for u
0
, a

0
"1 and a

1
"a

2
"a

3
"0,

for u
1
, a

0
"0 and a

1
"1, a

2
"a

3
"0,

for u
2
, a

0
"a

1
"0 and a

2
"1, a

3
"0,

for u
3
, a

0
"a

1
"a

2
"0 and a

3
"1. (43)

These four linearly independent functions can be written explicitly as

u
0
(m)"1!

C
3

24
m4#

C
1
C

3
720

m6#2,

u
1
(m)"m!

2C
2
#C

3
120

m5#
(2C

2
#C

3
)C

1
5040

m7#2,

u
2
(m)"m2!

C
1

12
m4#

C2
1
!6C

2
!C

3
360

m6#2,

u
3
(m)"m3!

C
1

20
m5#

C2
1
!12C

2
!C

3
840

m7#2. (44)

Similarly, there are four arbitrary constants b
0
, b

1
, b

2
, b

3
in equation (40). Four linearly

independent solutions v
0
, v

1
, v

2
, v

3
can be obtained by selecting these four arbitrary

constants as follows:

for v
0
, b

0
"1 and b

1
"b

2
"b

3
"0,

for v
1
, b

0
"0 and b

1
"1, b

2
"b

3
"0,

for v
2
, b

0
"b

1
"0 and b

2
"1, b

3
"0,

for v
3
, b

0
"b

1
"b

2
"0 and b

3
"1. (45)

These four linearly independent functions can be written explicitly as

v
0
(m)"1!

C
3

24
m4!

C
2
C

3
720

m6#2,

v
1
(m)"m!

2C
2
#C

3
120

m5!
(2C

2
#C

3
)C

2
5040

m7#2,

v
2
(m)"m2#

C
2

12
m4#

C2
2
!6C

2
!C

3
360

m6#2,

v
3
(m)"m3#

C
2

20
m5#

C2
2
!12C

2
!C

3
840

m7#2. (46)
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The linear combination of these four linearly independent functions is the homogeneous
solution of equations (36) and (37). Hence equations (34) and (35) can be written as

>
L
(m)"A

0
u
0
(m)#A

1
u
1
(m)#A

2
u
2
(m)#A

3
u
3
(m)#Fm, 0)m(s

0
, (47)

>
R
(m)"B

0
v
0
(m)#B

1
v
1
(m)#B

2
v
2
(m)#B

3
v
3
(m)#Fm, s

0
(m)1. (48)

The eight solution constants A
0
, A

1
, A

2
, A

3
and B

0
, B

1
, B

2
, B

3
can be found by substituting

equations (47) and (48) into the four boundary conditions (24a}d) and the four continuity
conditions (26a}c) and (30). From equation (24a), we get

A
0
"0. (49)

The remaining seven constants can be expressed by the following matrix:

1 0 0 0 0 0 0
0 0 0 D

24
D

25
D

26
D

27
0 0 0 D

34
D

35
D

36
D

37
D

41
D

42
D

43
D

44
D

45
D

46
D

47
D

51
D

52
D

53
D

54
D

55
D

56
D

57
D

61
D

62
D

63
D

64
D

65
D

66
D

67
D

71
D

72
D

73
D

74
D

75
D

76
D

77

G
A

1
A

2
A

3
B

0
B

1
B

2
B

3

H " G
!F

0
0
0
0
0

Ns
0
g2F

H , (50)

where

D
24
"vA

0
(1), D

25
"vA

1
(1), D

26
"vA

2
(1), D

27
"vA

3
(1),

D
34
"v@@@

0
(1), D

35
"v@@@

1
(1), D

36
"v@@@

2
(1), D

37
"v@@@

3
(1),

D
41
"u

1
(s
0
), D

42
"u

2
(s
0
), D

43
"u

3
(s
0
), D

44
"!v

0
(s
0
),

D
45
"!v

1
(s
0
), D

46
"!v

2
(s
0
), D

47
"!v

3
(s
0
),

D
51
"u@

1
(s
0
), D

52
"u@

2
(s
0
), D

53
"u@

3
(s
0
), D

54
"!v@

0
(s
0
),

D
55
"!v@

1
(s
0
), D

56
"!v@

2
(s
0
), D

57
"!v@

3
(s
0
),

D
61
"uA

1
(s
0
), D

62
"uA

2
(s
0
), D

63
"u@@

3
(s
0
), D

64
"!vA

0
(s
0
),

D
65
"!vA

1
(s
0
), D

66
"!vA

2
(s
0
), D

67
"!vA

3
(s
0
),

D
71
"!u@@@

1
(s
0
)#C

3
Nu

1
(s
0
), D

72
"!u@@@

2
(s
0
)#C

3
Nu

2
(s
0
),

D
73
"!u@@@

3
(s
0
)#C

3
Nu

3
(s
0
), D

74
"v@@@

0
(s
0
), D

75
"v@@@

1
(s
0
),

D
76
"v@@@

2
(s
0
), D

77
"v@@@

3
(s
0
). (51)
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Substituting equations (47) and (48) into equation (38), one obtains the following frequency
equation relating the non-dimensional modal frequencies X

i
(i is the vibration mode) to the

moving mass N, the beam angular velocity g, the moving mass position s
0

and the total
moment of inertia about the hub J

0
:

P
s0

0

[A*
1
mu

1
(m)#A*

2
mu

2
(m)#A*

3
mu

3
(m)] dm

#P
1

s0

[B*
0
mv

0
(m)#B*

1
mv

1
(m)#B*

2
mv

2
(m)#B*

3
mv

3
(m)] dm

#Ns
0
[A*

1
u
1
(s
0
)#A*

2
u
2
(s
0
)#A*

3
u
3
(s
0
)#s

0
]#J

0
#

1

3
"0, (52)

where

A*
1
"

A
1

F
, A*

2
"

A
2

F
, A*

3
"

A
3

F
, B*

0
"

B
0

F
, B*

1
"

B
1

F
, B*

2
"

B
2

F
, B*

3
"

B
3

F
.

Using equations (39) and (43), the spatial derivatives and integrals of u
1
, u

2
and u

3
can be

obtained. The expressions of u
1
, u

2
and u

3
and their integrals are given below:

u
1
(m)"m#

=
+
k/0

a
k`4

mk`4, (53)

u
2
(m)"m2#

=
+
k/0

a
k`4

mk`4, (54)

u
3
(m)"m3#

=
+
k/0

a
k`4

mk`4, (55)

P
s0

0

mu
1
(m) dm"

1

3
s3
0
#

=
+
k/0

a
k`4

k#6
sk`6
0

, (56)

P
s0

0

mu
2
(m) dm"

1

4
s4
0
#

=
+
k/0

a
k`4

k#6
sk`6
0

, (57)

P
s0

0

mu
3
(m) dm"

1

5
s5
0
#

=
+
k/0

a
k`4

k#6
sk`6
0

. (58)

Using equations (40) and (45), the spatial derivatives and integrals of v
0
, v

1
, v

2
and v

3
can be

obtained. The expressions of v
0
, v

1
, v

2
and v

3
and their integrals are given below:

v
0
(m)"1#

=
+
k/0

b
k`4

mk`4, (59)

v
1
(m)"m#

=
+
k/0

b
k`4

mk`4, (60)
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v
2
(m)"m2#

=
+
k/0

b
k`4

mk`4, (61)

v
3
(m)"m3#

=
+
k/0

b
k`4

mk`4, (62)

P
1

s0

mv
0
(m) dm"

1

2
!

s2
0
2
#

=
+
k/0

b
k`4

k#6
(1!sk`6

0
), (63)

P
1

s0

mv
1
(m) dm"

1

3
!

s3
0
3
#

=
+
k/0

b
k`4

k#6
(1!sk`6

0
), (64)

P
1

s0

mv
2
(m) dm"

1

4
!

s4
0
4
#

=
+
k/0

b
k`4

k#6
(1!sk`6

0
), (65)

P
1

s0

mv
3
(m) dm"

1

5
!

s5
0
5
#

=
+
k/0

b
k`4

k#6
(1!sk`6

0
), (66)
TABLE 1

Non-dimensional ,rst modal frequencies X
1

under di+erent moving masses N, mass positions
s
0

and beam angular velocities g for J
0
"3

J
0
"3 First mode X

1

N s
0

g"0 g"0)5 g"1)0 g"1)5 g"2)0 g"2)5 g"3)0

1 0 3)340 3)347 3)366 3)398 3)441 3)494 3)556
0)2 3)339 3)344 3)361 3)388 3)425 3)469 3)521
0)4 3)042 3)038 3)028 3)009 2)980 2)940 2)885
0)6 2)433 2)410 2)341 2)222 2)041 1)780 1)388
0)8 1)806 1)761 1)618 1)347 0)832 0 0
1)0 1)298 1)311 1)348 1)404 1)473 1)550 1)631

2 0 3)340 3)347 3)366 3)398 3)441 3)494 3)556
0)2 3)306 3)311 3)324 3)346 3)376 3)411 3)450
0)4 2)767 2)755 2)716 2)650 2)550 2)411 2)218
0)6 1)943 1)902 1)773 1)537 1)125 0 0
0)8 1)302 1)232 0)995 0)351 0 0 0
1)0 0)870 0)886 0)929 0)990 1)060 1)133 1)206

3 0 3)340 3)347 3)366 3)398 3)441 3)494 3)556
0)2 3)273 3)276 3)287 3)304 3)325 3)350 3)376
0)4 2)536 2)516 2)453 2)343 2)176 1)931 1)566
0)6 1)631 1)577 1)403 1)056 0 0 0
0)8 1)032 0)946 0)626 0 0 0 0
1)0 0)664 0)681 0)726 0)787 0)854 0)921 0)985

4 0 3)340 3)347 3)366 3)398 3)441 3)494 3)556
0)2 3)239 3)242 3)249 3)261 3)275 3)289 3)300
0)4 2)341 2)314 2)230 2)080 1)846 1)483 0)822
0)6 1)412 1)348 1)136 0)655 0 0 0
0)8 0)859 0)761 0)339 0 0 0 0
1)0 0)539 0)557 0)603 0)662 0)725 0)786 0)844
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where a
k`4

and b
k`4

can be determined by the recurrence formula given by equations (41)
and (42) respectively. Numerical bisection method [15] for the root "nding is then used to
solve the non-dimensional modal frequencies X

i
of the frequency equation (52) under

di!erent values of J
0
, s

0
, N and g. The whole calculation is performed using

double-precision FORTRAN programs.

5. RESULTS

Equation (15) shows that as J
t
PR, hG approaches zero. When J

0
"10 000 and g"0, the

frequencies X
i
obtained from equation (52) for various values of N and s

0
agree with results

in reference [12] for the clamped}free and free}clamped stationary beams. When J
0
"3

and s
0
"0, the results agree with those in reference [13] for N"0, ; (axial force)"0 and

various g.
In this paper, numerical results and Figures 2}9 are presented for J

0
"3. Tables 1}3 show

the calculated values of the non-dimensional "rst modal frequencies X
1
, second modal

frequencies X
2

and third modal frequencies X
3
, respectively, for di!erent values of moving

masses N, mass position s
0

and beam angular velocities g. Figures 2 and 3 show the 2-D
TABLE 2

Non-dimensional second modal frequencies X
2
under di+erent moving masses N, mass positions

s
0

and beam angular velocities g for J
0
"3

J
0
"3 Second mode X

2

N s
0

g"0 g"0)5 g"1)0 g"1)5 g"2)0 g"2)5 g"3)0

1 0 22)007 22)038 22)132 22)286 22)500 22)773 23)102
0)2 19)567 19)594 19)676 19)811 19)999 20)240 20)531
0)4 15)283 15)306 15)376 15)491 15)650 15)851 16)092
0)6 18)010 18)050 18)170 18)365 18)632 18)965 19)355
0)8 21)943 22)024 22)262 22)652 23)178 23)828 24)585
1)0 16)222 16)343 16)701 17)280 18)058 19)010 20)110

2 0 22)007 22)038 22)132 22)286 22)500 22)773 23)102
0)2 17)423 17)445 17)510 17)618 17)768 17)959 18)192
0)4 12)872 12)891 12)948 13)041 13)169 13)328 13)516
0)6 16)819 16)865 17)000 17)220 17)517 17)878 18)294
0)8 21)930 22)065 22)461 23)095 23)933 24)939 26)074
1)0 15)838 16)051 16)674 17)661 18)952 20)485 22)208

3 0 22)007 22)038 22)132 22)286 22)500 22)773 23)102
0)2 15)686 15)703 15)751 15)832 15)945 16)088 16)261
0)4 11)629 11)646 11)699 11)786 11)904 12)050 12)219
0)6 16)207 16)259 16)413 16)659 16)986 17)379 17)821
0)8 21)926 22)117 22)674 23)551 24)688 26)016 27)478
1)0 15)700 16)005 16)886 18)254 20)003 22)036 24)275

4 0 22)007 22)038 22)132 22)286 22)500 22)773 23)102
0)2 14)313 14)325 14)361 14)420 14)502 14)606 14)731
0)4 10)868 10)886 10)939 11)025 11)143 11)286 11)452
0)6 15)820 15)879 16)052 16)325 16)684 17)107 17)576
0)8 21)923 22)173 22)894 24)011 25)429 27)055 28)808
1)0 15)630 16)026 17)157 18)883 21)048 23)521 26)208



TABLE 3

Non-dimensional third modal frequencies X
3

under di+erent moving masses N, mass positions
s
0

and beam angular velocities g for J
0
"3

J
0
"3 Third mode X

3

N s
0

g"0 g"0)5 g"1)0 g"1)5 g"2)0 g"2)5 g"3)0

1 0 61)687 61)721 61)823 61)994 62)233 62)536 62)903
0)2 57)215 57)261 57)393 57)615 57)921 58)314 58)789
0)4 59)519 59)560 59)667 59)857 60)124 60)442 60)861
0)6 61)044 61)094 61)220 61)427 61)768 62)177 62)649
0)8 61)437 61)532 61)800 62)005 62)209 62)881 63)295
1)0 50)887 51)026 51)443 52)130 53)076 54)268 55)690

2 0 61)687 61)721 61)823 61)994 62)233 62)536 62)903
0)2 54)791 54)842 54)994 55)249 55)600 56)049 56)589
0)4 58)950 58)988 59)099 59)291 59)548 59)893 60)292
0)6 60)743 60)806 60)959 61)255 61)614 62)167 62)717
0)8 61)396 61)526 61)827 61)986 62)266 62)713 63)017
1)0 50)440 50)687 51)419 52)617 54)249 56)277 58)658

3 0 61)687 61)721 61)823 61)994 62)233 62)536 62)903
0)2 53)079 53)136 53)304 53)579 53)965 54)454 55)046
0)4 58)642 58)677 58)797 58)968 59)236 59)569 59)965
0)6 60)505 60)544 60)772 61)086 61)579 62)177 62)883
0)8 61)056 61)110 61)346 61)553 62)089 62)266 63)205
1)0 50)284 50)638 51)683 53)379 55)664 58)470 61)721

4 0 61)687 61)721 61)823 61)994 62)233 62)536 62)903
0)2 51)723 51)781 51)961 52)256 52)665 53)186 53)814
0)4 58)413 58)457 58)566 58)753 59)007 59)336 59)731
0)6 60)266 60)359 60)613 60)976 61)569 62)252 63)055
0)8 61)112 61)226 61)338 61)916 62)062 62)750 63)251
1)0 50)205 50)665 52)020 54)201 57)112 60)646 64)698
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plots of the non-dimensional modal frequencies X
i
as functions of moving mass N and mass

position s
0
for beam angular velocity g"0 and 3 respectively. Figures 4 and 5 show the 2-D

plots of the non-dimensional modal frequencies X
i
as function of beam angular velocity

g for di!erent mass position s
0

and moving mass N. Figures 6 and 7 show the 3-D plots of
the non-dimensional modal frequencies X

i
as functions of beam angular velocity g and

moving mass N for di!erent mass position s
0
. Figures 8 and 9 show the 3-D plots of the

non-dimensional modal frequencies X
i
as functions of beam angular velocity g and mass

position s
0

for di!erent moving mass N.
Table 1 shows that as the mass approaches the tip of the beam for 1)5)g)3)0, the

non-dimensional "rst modal frequencies become zero. However, at s
0
"1, they reappear

again. The modal frequencies at s
0
"1 are obtained using the equation of motion given by

equation (11) and the boundary conditions given by equations (12a}d).
Figures 2, 6 and 7 show that when g"0 the non-dimensional frequencies decrease or

remain approximately constant with increase in moving mass N for di!erent values of s
0
.

Figures 3 and 6 show that for g"3 and s
0
"0)2 the modal frequencies decrease with

increase in N. Figure 3 also reveals that for s
0
"0)5 the third modal frequency increases

with increase in N whereas the "rst and second modal frequencies decrease with increase in
N. Figure 3 also shows that at s

0
"0)8, the "rst and third modal frequencies remain zero



Figure 2. Non-dimensional modal frequencies X
i
as functions of moving mass N and mass position s

0
for beam

angular velocity g"0. Values of s
0
: (a) 0)2; (b) 0)5; (c) 0)8. Values of N: (d) 2; (e) 3; (f ) 4.
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and approximately constant, respectively, with increase in N, whereas the second modal
frequencies increase with increase in N.

Figures 4 and 5 show that in general the non-dimensional second and third modal
frequencies increase steadily with increase in g for di!erent values of N and s

0
. However, for

the "rst vibration mode with various N, Figures 4 and 6 show that at s
0
"0)2 the

frequencies increase with increase in g. Figures 4, 5 and 7 show that at s
0
"0)3, 0)5, 0)6 and

0)7, the "rst modal frequencies decrease with increase in g for N"2 and 4.
Figures 2 and 3 and Figures 8 and 9 show that for di!erent values of N and g, the

non-dimensional second and third modal frequencies increase and decrease repeatedly as
s
0
varies from zero to one. For the "rst vibration mode under di!erent values of N and g, the

frequencies decrease steadily as s
0

increases from zero.



Figure 3. Non-dimensional modal frequencies X
i
as functions of moving mass N and mass position s

0
for beam

angular velocity g"3)0. Values of s
0
: (a) 0)2; (b) 0)5; (c) 0)8. Values of N: (d) 2; (e) 3; (f ) 4.
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6. CONCLUSIONS

In this paper, the equation of motion of a clamped}free #exible Euler}Bernoulli beam
rotating in a horizontal plane and carrying a moving mass is derived by Hamilton's
principle including the e!ects of centrifugal sti!ening. The beam is divided into two separate
regions with respect to the moving mass. Two mode shape di!erential equations are derived
with four boundary, one discontinuity and three continuity conditions. The power series
method is used to solve the mode shape di!erential equations. A frequency equation is
derived giving the relationship between the non-dimensional modal frequencies and the
four non-dimensional parameters namely the moving mass position, the moving mass, the
beam angular velocity and the total moment of inertia about the hub. Numerical bisection
method with double-precision FORTRAN programs are used to solve the frequency
equation. Results are presented for the "rst three modes of vibration. These results are



Figure 4. Non-dimensional modal frequencies X
i

as function of beam angular velocity g. Values of mass
position s

0
: (a) s

0
"0)2; (b) s

0
"0)6. Values of moving mass N: *L* N"2; *]* N"3; *** N"4.
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useful in understanding the dynamic behavior of many practical engineering problems that
involve rotation of #exible arm carrying a moving mass.
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Figure 6. Non-dimensional modal frequencies X
i
as functions of beam angular velocity g and moving mass

N for mass position s
0
"0)2.
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Figure 7. Non-dimensional modal frequencies X
i
as functions of beam angular velocity g and moving mass

N for mass position s
0
"0)6.
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Figure 8. Non-dimensional modal frequencies X
i
as functions of beam angular velocity g and mass position

s
0

for moving mass N"1.
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Figure 9. Non-dimensional modal frequencies X
i
as functions of beam angular velocity g and mass position

s
0

for moving mass N"4.
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APPENDIX A: NOMENCLATURE

EI #exural rigidity of #exible beam
J moment of inertia of the hub
J
t

total moment of inertia about the hub
J
0

non-dimensional form of J
t

¸ length of #exible beam
m moving mass
N non-dimensional moving mass
g non-dimensional angular velocity of #exible beam
P(r, t) centrifugal force arising from centrifugal e!ect
P
0
(m) non-dimensional centrifugal force de"ned in equation (28)

r position of a point on #exible beam
s position of moving mass with respect to the clamped axis of beam
sR velocity of moving mass relative to #exible beam
s
0

non-dimensional form of s
t time
¹
b

kinetic energy of #exible arm
¹
m

kinetic energy of moving mass
q applied torque developed by motor
k
l

load torque developed by #exible beam and moving mass
k torque de"ned in equation (19)
k
0

non-dimensional form of k
< total potential energy of #exible arm
w transverse displacement of #exible beam
> mode shape function de"ned in equation (16)
h hub angle of #exible beam
hQ angular velocity of #exible beam
o mass per unit length of #exible beam
d( ) ) Dirac delta function
d= virtual work
u

i
modal frequency of #exible beam

X
i

non-dimensional modal frequency of #exible beam
m non-dimensional spatial co-ordinate
r position vector of a point on #exible beam
(i, j ) a pair of orthogonal unit vectors for #exible beam
V

m
resultant velocity of moving mass
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